The dynamic response of structures immersed in or conveying fluid flow. Fluid flow is a source of energy that can induce structural and mechanical oscillations. Flow-induced vibrations best describe the interaction that occurs between the fluid's dynamic forces and a structure's inertial, damping, and elastic forces.
The study of flow-induced vibrations has rapidly developed in aeronautical and nonaeronautical engineering.
In aeronautics, flow-induced vibration is often referred to as flutter, a topic of aeroelasticity concerning the mutual interactions of aerodynamic, elastic, and inertial forces in a flying object, its components, or its propulsion systems. Flow-induced vibration also covers classical flutter of an airfoil in a low-speed flow, stall flutter associated with a separated flow, and buffeting flutter related to turbulent wakes.
Nonaeronautical flow-induced vibrations are often found in blood vessels, smokestacks, suspension bridges, oil pipe lines, power transmission lines, telephone wires, television antennas, heat exchanger tubes, nuclear fuel assemblies, and submarine periscopes and hulls. All nonaeronautical structures are unstreamlined and susceptible to both stall flutter and buffeting flutter caused by flow separation. The interaction of these structures with a fluid stream usually is more complicated than that of aeronautical structures and offers more possibilities for the flow to trigger unstable oscillations in the structures.
"Nuclear is Unclear " -- A confucian in confusion.